

Find the slope of the bridge. Remember, it reaches its highest point halfway across.

Using the 10 inch mark on a ruler, see if you can model this slope on your desk.

This is an actual photograph, but it was taken with a telephoto lens which flattens space making it appear much steeper. Even photos need to be viewed with a critical eye!

Find the slope of the bridge. Remember, it reaches its highest point halfway across.

$$
\begin{gathered}
\frac{1609.34 \text { meters }}{2}=804.67 \text { meters } \\
\frac{44 \text { meters }}{804.67 \text { meters }}=.05468
\end{gathered}
$$

Using the 10 inch mark on a ruler, see if you can model this slope on your desk.
$.05468 \times 10$ inches $=.5$ inches So for every 10 inch run, there would be a .5 inch rise. Not so bad!
This is an actual photograph, but it was taken with a telephoto lens which flattens space making it appear much steeper. Even photos need to be viewed with a critical eye!

